Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
rev1(nil) -> nil
rev1(cons2(x, l)) -> cons2(rev12(x, l), rev22(x, l))
rev12(0, nil) -> 0
rev12(s1(x), nil) -> s1(x)
rev12(x, cons2(y, l)) -> rev12(y, l)
rev22(x, nil) -> nil
rev22(x, cons2(y, l)) -> rev1(cons2(x, rev22(y, l)))
Q is empty.
↳ QTRS
↳ Non-Overlap Check
Q restricted rewrite system:
The TRS R consists of the following rules:
rev1(nil) -> nil
rev1(cons2(x, l)) -> cons2(rev12(x, l), rev22(x, l))
rev12(0, nil) -> 0
rev12(s1(x), nil) -> s1(x)
rev12(x, cons2(y, l)) -> rev12(y, l)
rev22(x, nil) -> nil
rev22(x, cons2(y, l)) -> rev1(cons2(x, rev22(y, l)))
Q is empty.
The TRS is non-overlapping. Hence, we can switch to innermost.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
rev1(nil) -> nil
rev1(cons2(x, l)) -> cons2(rev12(x, l), rev22(x, l))
rev12(0, nil) -> 0
rev12(s1(x), nil) -> s1(x)
rev12(x, cons2(y, l)) -> rev12(y, l)
rev22(x, nil) -> nil
rev22(x, cons2(y, l)) -> rev1(cons2(x, rev22(y, l)))
The set Q consists of the following terms:
rev1(nil)
rev1(cons2(x0, x1))
rev12(0, nil)
rev12(s1(x0), nil)
rev12(x0, cons2(x1, x2))
rev22(x0, nil)
rev22(x0, cons2(x1, x2))
Q DP problem:
The TRS P consists of the following rules:
REV22(x, cons2(y, l)) -> REV22(y, l)
REV1(cons2(x, l)) -> REV22(x, l)
REV1(cons2(x, l)) -> REV12(x, l)
REV12(x, cons2(y, l)) -> REV12(y, l)
REV22(x, cons2(y, l)) -> REV1(cons2(x, rev22(y, l)))
The TRS R consists of the following rules:
rev1(nil) -> nil
rev1(cons2(x, l)) -> cons2(rev12(x, l), rev22(x, l))
rev12(0, nil) -> 0
rev12(s1(x), nil) -> s1(x)
rev12(x, cons2(y, l)) -> rev12(y, l)
rev22(x, nil) -> nil
rev22(x, cons2(y, l)) -> rev1(cons2(x, rev22(y, l)))
The set Q consists of the following terms:
rev1(nil)
rev1(cons2(x0, x1))
rev12(0, nil)
rev12(s1(x0), nil)
rev12(x0, cons2(x1, x2))
rev22(x0, nil)
rev22(x0, cons2(x1, x2))
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
REV22(x, cons2(y, l)) -> REV22(y, l)
REV1(cons2(x, l)) -> REV22(x, l)
REV1(cons2(x, l)) -> REV12(x, l)
REV12(x, cons2(y, l)) -> REV12(y, l)
REV22(x, cons2(y, l)) -> REV1(cons2(x, rev22(y, l)))
The TRS R consists of the following rules:
rev1(nil) -> nil
rev1(cons2(x, l)) -> cons2(rev12(x, l), rev22(x, l))
rev12(0, nil) -> 0
rev12(s1(x), nil) -> s1(x)
rev12(x, cons2(y, l)) -> rev12(y, l)
rev22(x, nil) -> nil
rev22(x, cons2(y, l)) -> rev1(cons2(x, rev22(y, l)))
The set Q consists of the following terms:
rev1(nil)
rev1(cons2(x0, x1))
rev12(0, nil)
rev12(s1(x0), nil)
rev12(x0, cons2(x1, x2))
rev22(x0, nil)
rev22(x0, cons2(x1, x2))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 2 SCCs with 1 less node.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
REV12(x, cons2(y, l)) -> REV12(y, l)
The TRS R consists of the following rules:
rev1(nil) -> nil
rev1(cons2(x, l)) -> cons2(rev12(x, l), rev22(x, l))
rev12(0, nil) -> 0
rev12(s1(x), nil) -> s1(x)
rev12(x, cons2(y, l)) -> rev12(y, l)
rev22(x, nil) -> nil
rev22(x, cons2(y, l)) -> rev1(cons2(x, rev22(y, l)))
The set Q consists of the following terms:
rev1(nil)
rev1(cons2(x0, x1))
rev12(0, nil)
rev12(s1(x0), nil)
rev12(x0, cons2(x1, x2))
rev22(x0, nil)
rev22(x0, cons2(x1, x2))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
REV12(x, cons2(y, l)) -> REV12(y, l)
Used argument filtering: REV12(x1, x2) = x2
cons2(x1, x2) = cons1(x2)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
rev1(nil) -> nil
rev1(cons2(x, l)) -> cons2(rev12(x, l), rev22(x, l))
rev12(0, nil) -> 0
rev12(s1(x), nil) -> s1(x)
rev12(x, cons2(y, l)) -> rev12(y, l)
rev22(x, nil) -> nil
rev22(x, cons2(y, l)) -> rev1(cons2(x, rev22(y, l)))
The set Q consists of the following terms:
rev1(nil)
rev1(cons2(x0, x1))
rev12(0, nil)
rev12(s1(x0), nil)
rev12(x0, cons2(x1, x2))
rev22(x0, nil)
rev22(x0, cons2(x1, x2))
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
Q DP problem:
The TRS P consists of the following rules:
REV22(x, cons2(y, l)) -> REV22(y, l)
REV1(cons2(x, l)) -> REV22(x, l)
REV22(x, cons2(y, l)) -> REV1(cons2(x, rev22(y, l)))
The TRS R consists of the following rules:
rev1(nil) -> nil
rev1(cons2(x, l)) -> cons2(rev12(x, l), rev22(x, l))
rev12(0, nil) -> 0
rev12(s1(x), nil) -> s1(x)
rev12(x, cons2(y, l)) -> rev12(y, l)
rev22(x, nil) -> nil
rev22(x, cons2(y, l)) -> rev1(cons2(x, rev22(y, l)))
The set Q consists of the following terms:
rev1(nil)
rev1(cons2(x0, x1))
rev12(0, nil)
rev12(s1(x0), nil)
rev12(x0, cons2(x1, x2))
rev22(x0, nil)
rev22(x0, cons2(x1, x2))
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
REV22(x, cons2(y, l)) -> REV22(y, l)
REV1(cons2(x, l)) -> REV22(x, l)
Used argument filtering: REV22(x1, x2) = x2
cons2(x1, x2) = cons1(x2)
REV1(x1) = x1
rev22(x1, x2) = x2
nil = nil
rev1(x1) = x1
rev12(x1, x2) = rev1
0 = 0
s1(x1) = s
Used ordering: Quasi Precedence:
[rev1, 0, s]
↳ QTRS
↳ Non-Overlap Check
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
REV22(x, cons2(y, l)) -> REV1(cons2(x, rev22(y, l)))
The TRS R consists of the following rules:
rev1(nil) -> nil
rev1(cons2(x, l)) -> cons2(rev12(x, l), rev22(x, l))
rev12(0, nil) -> 0
rev12(s1(x), nil) -> s1(x)
rev12(x, cons2(y, l)) -> rev12(y, l)
rev22(x, nil) -> nil
rev22(x, cons2(y, l)) -> rev1(cons2(x, rev22(y, l)))
The set Q consists of the following terms:
rev1(nil)
rev1(cons2(x0, x1))
rev12(0, nil)
rev12(s1(x0), nil)
rev12(x0, cons2(x1, x2))
rev22(x0, nil)
rev22(x0, cons2(x1, x2))
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 0 SCCs with 1 less node.